
SEVEN TIPS
FOR SUCCESS WITH
GIT IN THE ENTERPRISE

 2

Introduction
Git’s popularity for open-source and other small- to medium-size projects has

led inexorably to the enterprise, but making Git work in that arena is neither

easy nor obvious. In fact, its adoption creates a number of challenges to balance

developer preference with the needs of the enterprise. This guide reviews

considerations when using Git in the enterprise and recommends best practices

for Git deployment.

Dealing with a DVCS from a team perspective
is more complex than dealing with a central
system, and this complexity is at the root of
most current barriers to broader use.”

- Gartner, Inc.

“

*Gartner, Inc., Market Guide for Software Change and
Configuration Management Software, Jim Duggan,
Joachim Herschmann, 26 August 2015.

 3

WORKFLOW
The most obvious reason for Git adoption is because developers like its distributed workflow, even though

it’s rarely used in an entirely distributed model. They often need to switch contexts frequently, and Git’s support

for lightweight, in-place, local branching is a big help. In fact, Git’s branching may be its defining feature.

But once you move beyond the individual desktop, how do you manage the new complexity introduced by Git?

Who gets to determine the final release branching structure? What is the protocol for sharing experimental branches

with colleagues? Where should the work be reviewed? When should those branches’ contents be brought back into

the master? And how should that be done, given that the Git community remains polarized over merge versus rebase?

One approach is provided by the Git-flow proposal,

although it’s not an ideal solution for all teams.

Tools like GitSwarm, GitHub, GitLab, or Atlassian
Stash implement simple workflows around pull

requests to supply some of the answers.

The best time to address these issues is before

teams start adopting Git, because trying to change

workflows and rebuild history once work has been

committed is a very messy business.

WORKFLOW BEST PRACTICES

 ¢ Nail down your branching strategy with clear
stages and triggers, preferably automating the flow
of code as much as possible.

 ¢ Make review an integral part of that branching
strategy; multi-disciplinary collaboration is crucial
to modern product development.

 ¢ Give all of your stakeholders tools suited to their
particular needs to maximize productivity and
ease of use.

1

 4

CONTENT
A popular dictum of Agile development is that you should keep all of your intellectual property (IP) in the same

place, a “single source of truth.” Yet increasingly, multi-disciplinary teams and requirements have exploded the sheer

number and size of assets for a typical project. Source code is often a tiny drop in the binary bucket compared

to documents, images, models, audio, video, even entire virtual-machine (VM) environments for the sake of testing

and deployment.

This expansion poses a serious challenge for enterprise adoption of Git because the design of its internal file system

mandates a practical maximum repository size of a gigabyte or two at most. Even repositories far short of the

practical limits can exhibit relatively poor performance, depending upon the type and size of assets and operation

at hand; executing a simple Git “blame” command against a repository with large digital assets can provide a painful

demonstration of the point.

In addition, these binary assets are being developed by product designers or artists who may lack technical skills

and may be unlikely to use the Git command line, even if it could handle their work. Part of your Git management

plans should include how these non-technical contributors will store their work, how those files will be managed

alongside the code in Git, and how all the correct revisions of files will be brought together in your build

and release systems.

2

 5

The most popular ways to handle large binary assets are

to move large files outside the repository or to divide the

content among multiple repositories, which must be unified

through DevOps magic for builds, testing, releases, and

other tasks. Tools such as git-annex and Git LFS can help in

moving digital assets outside the repository while leveraging

Git submodules, and a variety of home-brewed scripting

techniques can be useful in taming “Git sprawl”.1 However,

these approaches can introduce new challenges when

considering backup processes or distributing content across

different locations. Where possible, companies should look

for a version control system that provides the benefits of

a distributed version control system (DVCS) but can keep

all the assets in a single store.

CONTENT BEST PRACTICES
 ¢ Keep all of your content in one place, ideally in a

single version management tool. Failing that and
if you choose to use Git, then consider adopting
a “monorepo”, 2 instead of settling for tools that
fragment your IP.

 ¢ Use a Git management suite that can handle all of
your files, not just source code but also digital assets.

 ¢ Have a strategy for archiving older content that
dovetails with your branching strategy to keep
working repositories clean and easier to use.

1. Git sprawl refers to content divided into multiple repositories to keep size down and performance up.
2. A “monorepo” is a single large repository. It can make management easier in some respects but one must

also consider the limitations of large repositories in Git.

 6

CONTINUOUS DELIVERY
Whatever workflows your contributors favor or type

of content they create, the final products have to

be integrated and tested with as much automation

as possible. The architecture of Git can make this

automation a heavy load on build systems, so planning

is necessary to get reasonable performance from

continuous delivery systems.

A common best practice for continuous delivery is

to run builds and tests against a fresh copy of all your

files. But in the enterprise, this step can easily overload

servers when using Git. There are two reasons for

this. First, like most DVCS systems, Git brings down

all revisions by default during a clone operation. And

second, Git has no support for narrow cloning (bringing down only the necessary files instead of everything).

In short, when you clone with Git you get every revision of every file by default.

These issues typically aren’t problems for open-source and other small- to medium-size projects, but they can become

fatal obstacles for larger enterprise projects. The sheer volume of merge operations when dealing with a large number

of development branches can create a similar stumbling block. Git encourages developers to branch for each task or

feature, but keeping all that work in sync in both directions can be tricky with large teams working with lots of files.

CONTINUOUS DELIVERY
BEST PRACTICES

 ¢ Use shallow clones to get just head revisions, and
prefer a Git management solution with support
for narrow clones; both will greatly ease server load.

 ¢ Choose the right build cycle times/events for your
projects; building every hour or day (instead of on
every commit) may be necessary when using Git.

 ¢ Automate code merging as much and as frequently
as possible to catch integration issues before they
log-jam the flow of code.

3

 7

RELIABILITY
No matter how well a tool does a job, it’s not useful when it’s not working. This is especially true in the enterprise,

which often runs around the clock around the world. Git was built largely with the simple file system in mind, and

most Git management solutions are built directly on top of basic Git. So meeting enterprise requirements for disaster

recovery and high availability can be challenging.

Most Git management solutions offer services such as backups and snapshots, which are a good first line of defense.

Some offer higher availability through standby VMs with various means to mirror changes between file systems

and/or swap out different file storage as needed. But if what you need is dial-a-load scalability with high availability,

your list of options narrows considerably.

Although it may appear to be simple to clone another copy of a repository for safety, you’ll be cloning the whole

repository with Git. This approach is fine for small or even medium-size projects, but big projects consume

bandwidth, disks, and time. If your content is measured in anything beyond megabytes, you need to dig carefully

into the details of reliability with your Git management solution.

RELIABILITY BEST PRACTICES
 ¢ Backups are good, but a disaster recovery plan is even

better; craft one to balance acceptable loss with cost
and verify it regularly.

 ¢ When selecting a Git management solution, look for
one that offers both clustering and high availability to
keep everyone working even when hardware goes down.

4

 8

SECURITY
Raw Git has a limited approach to security, providing solid

authentication while ignoring authorization altogether. That

is, it cares about who you are but leaves what you do to the file

system. This approach is great if all you want to do is ensure each

commit author is who he or she claims to be because identity is

verified through the use of public-key cryptography signatures.

But what if you want to restrict access to a particular repository?

A particular branch? How about a single file full of proprietary

secrets? Git offers nothing to deal with these needs, which is a key

reason so many Git management solutions exist. But not all Git

management solutions are created equal when it comes to security.

Git management solutions for the enterprise typically make it easy to create users and groups and to restrict project

(read: repo) access using those tools. In addition, there are typically a small set of roles that have varying permissions

that you can assign. Some (e.g., GitLab) extend the notion of permissions to branches as well, making it possible to

restrict access to some users but not others.

If your needs extend beyond that (e.g., finely grained permissions at the folder/file level), a solution is much harder

to find. The best solutions will offer various levels of monitoring and track patterns of use.

Consider also your needs for audit trails and logging. In a secure or regulated environment, you may be required

to keep immutable logs of who changed what, when, and why. Standard Git allows a lot of flexibility when it comes

to rewriting history or even hiding changes completely. If audit trails are important, look for a version management

tool that provides reliable, secure logging.

SECURITY BEST PRACTICES
 ¢ Be sure the branching structure you choose not

only matches your workflow but also carves up
your content according to security needs.

 ¢ Select a Git management solution that supplies
access control to the maximum necessary
granularity for your security needs.

 ¢ When branches aren’t enough, organize your
content ahead of time so that critical files are
together to simplify restricted access.

 ¢ Choose a Git management solution with active
and timely monitoring of user actions to flag and
report questionable behavior before you lose IP.

5

REPOSITORY MANAGEMENT
BEST PRACTICES

 ¢ Consider how much bandwidth your DevOps
team has for repository management when
reviewing your content and choosing a solution.

 ¢ Investigate tools and techniques for handling
components at a higher level as first-order objects
in themselves if at all possible.

 ¢ Use a Git management solution that avoids Git
sprawl as much as possible or at least takes care
of the details for you under the hood.

 9

REPOSITORY MANAGEMENT
The need for repository management varies greatly depending upon the limitations of your chosen Git management

solution. If you choose a system that poorly handles digital assets, large numbers of files, or a large total repository size,

then Git sprawl may be your new way of life.

Similarly, you may also incur Git sprawl if your process relies heavily on

component-based development (CBD). Large numbers of individually

developed and versioned components can lead to issues with Git
“submodules” if your Git management solution doesn’t provide

another mechanism. Git by itself makes it relatively easy

to map external repositories into another, but there are a number

of different tools, approaches, and trade-offs to consider.

Regardless of the cause, the more finely you have to break apart

your content, the more problems you’ll have trying to put it back

together for builds, testing, and other tasks. Managing the explosion

of repositories can become a full-time DevOps headache without

careful planning and maintenance.

6

7

 10

VISIBILITY
The last stop on our tour of enterprise needs is another that Git by itself ignores entirely and most Git management

solutions do little (if anything) to address: the need for transparent visibility into the production pipeline at every

stage. Most Git management solutions give you dashboards for all projects and individual projects and even some

handy statistics. Many also provide lightweight issue tracking or the ability to integrate with third-party application

lifecycle management (ALM) tools.

But unless you go with a vendor that supplies other parts of the total solution as well, you’re likely to be on your own

handcrafting plugins, scripts, or other integration mechanisms. The aforementioned Git sprawl only complicates

matters—for obvious reasons, it’s much easier to look at data from a monorepo than data from hundreds or even

thousands of repos.

VISIBILITY BEST PRACTICES
 ¢ Assess your information priorities carefully and

determine the most crucial metrics; let them guide
your Git management solution selection.

 ¢ Be mindful of the degree to which the solution you
choose will lead to Git sprawl; investigate tools and
techniques for aggregating data if needed.

 ¢ Select a vendor that supplies more than just Git
management, particularly if you require custom
metrics or broad integration with other tools.

Enterprise-grade management of Git that
offers important aspects of a DVCS — good
merging the ability to work offline and
good collaboration — along with the security
and central repository of a CVCS, will resolve
most remaining concerns about the use
of the DVCS model.”

- Gartner, Inc.

*Gartner, Inc., Market Guide for Software Change and Configuration
Management Software, Jim Duggan, Joachim Herschmann, 26 August 2015.

“

North America
Perforce Software Inc.
2320 Blanding Ave
Alameda, CA 94501
USA
Phone: +1 510.864.7400
info@perforce.com

Europe
Perforce Software UK Ltd.
West Forest Gate
Wellington Road
Wokingham
Berkshire RG40 2AT
UK
Phone: +44 (0) 1189 771020
uk@perforce.com

Australia
Perforce Software Pty. Ltd.
Suite 3, Level 10
221 Miller Street
North Sydney
NSW 2060
AUSTRALIA
Phone: +61 (0)2 8912-4600
au@perforce.com

perforce.com
Copyright © 2015 Perforce Software Inc. All rights reserved. All trademarks or registered trademarks used herein are property of their respective owners.

CONCLUSION
We’ve looked at seven key aspects in which Git poses a challenge for the enterprise. The best option for your

enterprise may be to find an alternative to Git that addresses the company’s needs while still delivering the

features that developers love.

There are few such tools currently available, and a leading solution is Perforce Helix. If you do choose to deploy

Git, the best practices listed in this ebook will help you to identify important planning considerations, select

a Git management solution, and minimize issues in the long term. So take a careful inventory of your processes,

content, and needs before diving into the shallow end of the wrong pool with Git in the enterprise.

Commercial implementations of DVCSs with extensions for central
administration, audit, traceability and accountability facilities will
accelerate experimentation with DVCSs in IT settings.”

- Gartner, Inc.

*Gartner, Inc., Market Guide for Software Change and Configuration
Management Software, Jim Duggan, Joachim Herschmann, 26 August 2015.

“

